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A study is made of the use of the c-algorithm for the acceleration of sequences of 
quadrature approximations. It is shown to be an effective extrapolation technique 
when applied to the appropriate sequence of approximations to fmite range single and 
multidimensional integrals and some single dimensional indefinite integrals. It is also 
shown to have a more general range of applicability than certain more familiar tech- 
niques because it can be applied without modification to those finite range integrals 
whose integrands have boundary singularities. 

1. INTRODUCTION 

In all branches of applied mathematics we are faced with the problem of 
evaluating integrals to a given accuracy. In evaluating single or double integrals 
of simple “well-behaved” functions, standard quadrature techniques, such as 
Gaussian integration, the trapezoidal rule, or Simpson’s rule, often give a suffi- 
ciently accurate answer with the use of only a small amount of computer time; 
then the efficiency with which we use information, in the form of values of the 
integrand for various values of the variables, is not particularly important. 

The efficiency with which we use information becomes important when we 
need to evaluate the integrand at a large number of points in order to obtain 
sufficient accuracy. For example, the use of an n-point quadrature formula for 
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each single integration in an r-fold integral requires the evaluation of the integrand 
at nr points; even if r is only 5 or 6, the computer time involved rises steeply 
with IZ. The problem is aggravated since inaccuracies in each single integration 
may accumulate to produce greater inaccuracies in the multiple integral. There 
are also situations where it is difficult to obtain accurate results for single integrals 
using a simple quadrature rule; in particular, when the integrand possesses an 
integrable singularity in or near the range of integration, or when the integrand 
oscillates infinitely in an infinite range integral. In any of these circumstances, it is 
important to improve the use of information about the integrand; that is, to 
evaluate the integrand at as few points as possible in obtaining the value of the 
integral to a given accuracy. 

In this paper, we consider various methods of evaluating integrals over finite 
and semi-finite ranges. We shall denote the integral by S. By certain standard 
procedures we can obtain approximations S, to S; for example, if S is an integral 
over a finite interval [a, b], S, could be the approximation to S given by the 
p-point Legendre-Gauss quadrature, or by the 2p-paint trapezoidal rule. From 
a sequence {S,}, there are a number of ways of defining a second sequence (u,} 
which may converge to S more rapidly than {S,). In Section 2 we shall discuss 
various ways of defining the sequence {up}; in particular, we apply the PadC 
approximant method to form a nonlinear sequence {u,}. In Sections 3 and 4 we 
study the behavior of sequences (S,} and (u,} for various sequences of approxima- 
tions {S,) to S, and for various definitions of {r~,}. In Section 5 we extend our 
investigation to integrals over a semi-infinite range and in Section 6 we give some 
results for finite range multidimensional integrals. 

Our study is to a large extent experimental, since we compare in practice the 
efficiency of various methods of evaluating a set of particular integrals. Wherever 
possible, we perform an error analysis, but we are aware that this analysis is in 
some ways inadequate. For finite range integrals, however, the error analysis does 
give a fairly clear indication of the reasons for the success or failure of the various 
methods of integration studied. 

2. TECHNIQUES FOR ACCELERATING CONVERGENCE 

Given any sequence {S,} tending to a limit S, there are several ways of forming 
a second sequence {u,} which may converge to S faster than S, . If (TV is a function 
of s, , s, )...) S, only, and if 

G I UD -SI < IS,-SI (2.1) 

with C, > 1 (p 3 p. , say), we say that the convergence of (S,} has been accelerated 
by forming {a,} from it. The aim of acceleration techniques is to make C, increase 
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as rapidly as possible with p. There are certain conditions under which acceleration 
of convergence can be proved. Our investigation is not confined to sequences of 
quadrature approximations in this category; whenever possible, however, we 
analyse errors in order to show which methods of acceleration are likely to succeed. 

The three methods of acceleration we consider are: (A) the Romberg method, 
(B) the Bulirsch-Stoer method, (C) the Pad6 or E-algorithm method. We now 
discuss these three methods. 

A. Romberg Integration 

The Romber method [I, 21 is designed to reduce the error when calculating 
integrals by use of the trapezoidal rule for an integral 

S = jb f(x) dx 
a 

(2.2) 

over a finite interval (a, b). Dividing the interval into 29 subintervals of length 

h, = 2-p(b - a), (2.3) 

the trapezoidal rule gives the approximation 

S, = h, $j(a + jh,), 
j=O 

(2.4) 

where C” indicates that only half the contribution is included from each end-point. 
Then if f(x) has continuous derivatives to order (2n + l), the Euler-Maclaurin 
formula gives 

S, - S = f a,hg + O(h2,“+l), 
Z=l 

(2.5) 

with 
a, = B211f(2z-1)(b) -f(2t-l)(a)]/(21)!; (2.6) 

B,, are the Bernoulli numbers, and the coefficients a, in (2.5) are independent of p. 
An array of approximants TAkk’ are defined for m = 0 by 

T(k) s S 
0 k, (2.7) 

and for m = 1,2, 3 ,..., successively by 

(2.8) 
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so TAk) is a linear combination of Sk, Sk+, ,..., &+m , and is thus a linear approxi- 
mation to S. The range (a, b) is divided into 2 k+m intervals in order to calculate 
S k+m , so that p = k + m in (2.3). The integrand has to be evaluated at 2k+m + 1 
points to calculate T, . (k) The linear combination (2.8) is chosen so that the terms 
up to O(h~~) in (2.5) are eliminated when Tkk’ is calculated. For functions f(x) 
with (2m + 2) continuous derivatives, it can be shown that [2] 

(2m+2)B 
2m+2 

(2”‘2’(4) 

I T’) - ’ I G ( @ ,?$,k,,,,,,,, f+ 2)! / (2.9) 

The Romberg method is applicable whenever the errors in a sequence of approxi- 
mants are of the form (2.5), with h, given by (2.3). It is easy to show [2] that the 
method is equally applicable when the mid-point rule is used to define the sequence 
CL>* 

In the original Romberg scheme, the range of integration is divided into, 
successively, 2, 4, 8 ,..., 223 intervals. The Romberg method can be generalised by 
dividing the range of integration into, successively, n, , n2 , ng ,... intervals, where 

n,+h, > c > 1 (2.10) 

for all p. The range of integration (a, b) is divided into intervals 

h, = (b - a)/n, . (2.11) 

The approximants Thkk’ are then defined, using the trapezoidal rule, by 

Tg(k) = S, = $” f(jh,), 
j=O 

and by 

T(k) = hk2T,(f:;’ - h;+,T% 
m hk2 - h;+m ’ 

(2.13) 

Again, the first m error terms in (2.5) are eliminated when Tz’ is computed. For 
all sequences in,}, Tkkk’ are linear approximants. 

Various sequences {nk} have been used to accelerate convergence [2]. Bulirsch [3] 
has suggested the sequence defined by 

and 

nl = 1, n2 = 2, n3 = 3, n4 = 4, 

%+l = nflk-l/nk-2 (k 2 4); 
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this sequence gives maximum accuracy for given information input, for functions 
with a sufficient number of continuous derivatives. In this sense it is an improve- 
ment on the original Romberg method, but the relative effectiveness of the Bulirsch 
and the original Romberg schemes depend upon the particular integrand. For 
well-behaved integrands, both schemes are very effective. In the examples we 
give later in the paper, we have used the original Romberg method. 

B. The Bulirsch-Stoer Method 

Bulirsch and Stoer have proposed a nonlinear method for accelerating the 
convergence of a sequence S, of approximants, corresponding to division of the 
range into subintervals of length h, ; S, may be given, for example, by (2.4), with 
h, given by (2.3). The dependence of the approximations on h, is specifically 
indicated by writing them as 

hA?4. (2.14) 

The limit of this expression is required as p + co; so that h, + 0 simultaneously. 
Bulirsch and Stoer fit a rational function of argument h2, 

R(h) _ a, + u,h2 + a&z4 + ... + uNh2N 
1+b,h2+b2h4+...+b,h2M’ (2.15) 

to (M + N + 1) approximants (2.14), with h taking the appropriate values h, . 
Thus a, (r = 0 ,..., N) and b, (s = l,..., M) are determined by the equations 

W%J = S,(h,). (2.16) 

This is the process [5, 61 of forming “Pad6 Approximants of the Second Kind.” 
The final approximant is 

NO) = %I 7 (2.17) 

and Bulirsch and Stoer have reduced the calculation of a, to an iterative procedure. 
In later examples we shall quote results obtained by the Bulirsch-Stoer method. 

For well-behaved integrands, the effectiveness of the method is comparable to 
that of the Romberg method. 

C. The Pude’ Method (E-algorithm) 

One of the most powerful methods of approximating a function is the use of 
Padt approximants to analytically continue the power series expansion of the 
function. An account of the mathematical theory of PadC approximants and their 
applications in physics has recently been published [5], and the close connection 
between Pad& approximants and continued fractions is well known [7]. In contrast 
to Romberg integration, the PadC method defines nonlinear approximations. 
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Given a series 

cc 

C dth” 
t=o 

in a parameter X, the (M, N) Pade approximant is a rational fraction 

whose coefficients are determined by the formal identity 

(2.18) 

(2.19) 

(2.20) 

Apart from possible cancelling factors in (2.19), the identity (2.20) determines 
fMsN(X) uniquely in terms of the coefficients (dt}. 

The PadC method can be applied to accelerate convergence of a sequence {S,}. 
Define the differences 

A&-, = Si - SipI ; (2.21) 

then form the infinite series 

S(A) = So + t ASi-lxi, (2.22) 
i=l 

with partial sums 

S,(h) = So + i ASi&. (2.23) 
i=l 

Then, putting A = 1, 

s, = S,(l), (2.24) 

and if the sequence {S,} tends to the limit S, 

s = S(1). (2.25) 

The diagonal Pade approximant formed from (p + 1) terms of the series (2.22), 
with 

p = 2N (N = 0, 1, 2 ,... ), (2.26) 
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and with h = 1, is [8] 

Sll s, ‘.. SN 

ASO AS, ... ASN 

A& AS, .‘. AS,,, 

I . 
. . . . . . . 

.fN,N(l) = , As;y-1 . I 3.. As,,, OS, ... 1 , . (2.26) 

ASo AS, ... ASN 

As, A& ... AS,,, 
. . . . . . . 

AS,, ASiv .*. AS,,-, 

Expression (2.22) can be obtained [8] by applying the E-algorithm to the original 
sequence {S,}. The sequence ~fcP’ is defined by the nonlinear recurrence relation 

with 

Ek 
(9) = EcDDz' + [EcPPl) _ &l)]-l, (2.27) 

C-1) = 0 
Ek ? 

(0) = s 
Ek k (k = 0, 1, 2 ,... ). (2.28) 

The number @‘I can be set out in a triangular array 

(0) 
EO 

(0) (1) 
9 60 

(0) (1) (2) 
E2 El 60 

(0) (1) (2) (3) 
E3 E2 El % 
, . . . , . . . . . . . 

with the columns labeled by the superfix p. Only the even columns of the E-table 
provide approximants. Wynn [9] showed that the approximants (2.26) are given 
by 

fN,NU) = 4FN); (2.29) 

more generally, the supradiagonal approximants of the Pade table, with M >, N, 
are given by 

fN,$.j(l) = E(Y) M N* (2.30) 

The e-algorithm is thus a particular application of the Pad4 method. 
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If the series (2.18) is a linear combination of n geometric progressions plus a 
constant term, then fnJh) is the exact sum of the series for all A, except at the 
12 poles offnJh). Wynn [lo] has stated the corresponding property of a sequence 
{S,} converging to S, with partial sums of the form 

S, = S + f bzBzp, 
I,=1 

(2.31) 

where 

1 > I81 I 3 I p2 I 3 *.. 3 I 13, I. (2.32) 

Donnelly [ll] has applied a theorem of Montessus de Ballore to show that for 
j < n, @‘/I /3j+1 y+s + 0 as m -+ 00, where 6 is any positive number. We note 
that, since the Pad6 method sums divergent geometric progressions, the Pad6 
method works theoretically when j /3, j > 1 for some Z, but in practice there are 
problems with round-off error. 

If we omit terms of O(h”,““) in (2.5), the error S, - S is of the same form as 
in (2.31), with bl = a, and 

)l3z = 24. (2.33) 

3. COMPARISON OF METHODS FOR A FINITE INTERVAL 

We can now compare the efficiency of the Pad6 and Romberg methods of 
accelerating convergence, when applying the trapezoidal rule to functions with 
a number of continuous derivatives. To eliminate terms up to hy in (2.5), we 
calculate TAO); this requires a maximum of 2” intervals in the range (a, b). To 
eliminate the corresponding IZ terms in (2.31), we calculate fn&); this requires 
the evaluation of trapezoidal approximants up to S,, , corresponding to 22n inter- 
vals. 

So for “well-behaved” integrans, we expect Romberg integration to be more 
efficient that the Pad6 method; the Bulirsch-Stoer method is then comparable 
to the Romberg method in efficiency. Both Romberg and Pad6 methods eliminate 
“geometric” error terms, but the Romberg method takes advantage of the partic- 
ular form of error terms in (2.31), given by (2.33). A comparison of the efficiency 
of the Romberg and Pad6 methods for a simple nonsingular integral is given in 
Table I; as expected, greater accuracy is obtained using the Romberg method, 
using a given number of points. The Romberg method does not appear to have 
as great an advantage over the Pad6 method as might be expected from the error 
analysis. 
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TABLE I 

Comparison of original Romberg and C-Algorithm 

s 

2 
Extrapolation for In(x) dx = 0.3862943611 

1 

Total Best Best 
points Romberg c-algorithm 

sampled value value 

2 0.346735903 0.3465735903 

3 0.3858346022 0.3760193492 

5 0.3862878935 0.3864095135 

9 0.3862943091 0.3863030543 

17 0.3862943609 0.3862942411 
33 0.3862943611 0.3862943586 

65 0.3862943611 0.3862943611 

In situations where the error is approximately of the form (2.31), but with /Id 
not given by (2.33), there is no reason why the original Romberg integration 
method should be effective, but the Padt method should still work. This situation 
occurs when the integrand possesses certain types of singularity. Lyness and 
Ninham [13] have made a general study of this problem for finite-range integrals, 
and have established the form of the error for certain particular types of singularity; 
the range of integration is taken as (0, 1). Fox [14] has derived similar results for 
a limited class of integrands, using simpler methods. Consider first functions of 
the form 

f(x) = x=(1 - xYg(4, (3.1) 

where g(x) and its derivatives are continuous in [0, 11; the quadrature considered 
is defined by dividing the range of integration into m equal parts, and then applying 
identical quadrature rules to each part. This process is called a “generalised 
trapezoidal rule.” Lyness and Ninham and Fox have shown that the error is then 
of the form 

t-1 

Em = C & + "2 & + OWt), 
S=O S=O 

where A, and B, (S = 0, 1,2,...) are independent of m. If we ignore terms of order 
m-t, and choose the number of subintervals to be 

m = 2p (P = 0, 1, 2,.-L (3.3) 
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we see that the error (3.2) is of the form given by (2.31), with & equal to m-(a+s+l) 
(s = 0, 1, 2,...). The parameters & satisfy (2.32) provided m > 2; since fll do not 
have the particular values (2.29), the original Romberg method will not be useful. 
Fox [14] has shown that the Romberg method can be adapted to deal with inte- 
grands of type (3.1), but the acceleration method depends upon the values of 
(Y and /3. The PadC method, however, will eliminate successive error terms in 
(3.2), regardless of the values of OL and ,8, provided the number of subintervals 
in successive quadrature approximations is given by (3.3). 

For integrands of the form 

f(x) = x=(1 - xy log x g(x), (3.4) 

where g(x) has continuous derivatives in [0, I], the error using an m-interval 
generalised trapezoidal rule is [13, 141 

t-l A, + C,logm t-1 

Em= c matstl +C 
.S=O S=O 

+F& + Ok-9. (3.5) 

This error is of the form (3.2), but contains the slowly varying term log m. We 
therefore expect that the Padt method will work well, though not quite as well as 
for integrands of type (3.1). 

In the examples in the next section, one generalised trapezoidal rule used is 
2-point Gauss on, successively, 1, 2, 4, 8, 16 ,... subintervals; the application of 
the E-algorithm to the sequence of approximants so formed will be seen to 
accelerate convergence appreciably when the integrand is singular, in accordance 
with the error analysis predictions. We shall see that the application of the original 
Romberg and Bulirsch-Stoer methods, again as predicted, is ineffective. 

We also consider the application of the E-algorithm to the sequence of approxi- 
mants formed by using the trapezoidal rule with 2, 3, 5,9, 17,... points. Again 
we expect the method to be effective for singular integrands, especially of types 
(3.1) and (3.4). This method requires the evaluation of the integrand only at the 
2” + 1 points required for the final quadrature. 

4. RESULTS FOR FINITE-RANGE INTEGRALS 

We have used a variety of methods for evaluating a number of different integrals 
over a finite range. In this section we give a number of typical examples, and then 
comment on the results. 

The methods are based upon three different sequences of quadrature formulas, 
which we now enumerate: 
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I. Subdivide the range successively in 21, (p = 1, 2,...) subintervals. Apply 
the 2-point Legendre-Gausss quadrature formula to each of the 28 subintervals 
and sum the results to give the approximant S, . No end-point values of the 
function are used. (The Euler-Maclaurin error expansion for this method begins 
with an h4 term instead of the usual h2 term for the trapezoidal and midpoint 
rules). 

II. Use trapezoidal rule for 2~ + 1 points (2p subintervals) to give the 
approximant S, . 

III. Use 2(p + 4) point Legendre-Gauss quadrature to define S, . 

TABLE II 

Key to Integration Methods 

Roman numerals indicate the quadrature rule: 

I 2-point Legendre-Gauss on 2~ subintervals 
II Trapezoidal rule 

III 2(p + 4)-point Legendre-Gauss 
IV p-point LaguerreGauss quadrature 
V Transformation to range (0, l), followed by I 

VI Legendre-Gauss on 29 - 1 subintervals, Laguerre-Gauss on infinite subinterval. 

Capitals indicate the acceleration method: 

A Original Romberg 
B Bulirsch-Stoer 
C Pad6 (+algorithm). 

We classify methods by giving the Roman numeral (I, II or III) denoting the 
quadrature rule, and the capital letter denoting the acceleration method used, 
as in Section 2 (A denotes Romberg, B Bulirsch-Stoer, and C Pade or E-algorithm). 
This classification is set out in Table II (Key). The accuracy of each approximation 
is indicated by exhibiting inaccurate figures in boldface type. In Table III we give 
results for the integrals of several well-behaved functions, including that of the 
polynomial 

P(x) = 35x15 - 98~‘~ + 54x’ + 26x4 - 13x3 - 39x. (4.1) 

The left-hand column of the table indicates the integration method, and the next 
column gives the number of points used in the evaluation; these have been chosen 
almost equal, so that the accuracy of the various methods can be easily compared. 
The accuracy of any approximation is indicated by the change from ordinary to 
boldface type. The top two row of Table III give, for comparison, the exact 
result and the result of applying 64point Gaussian quadrature. For these well- 
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behaved integrands the three best methods are 64-points Gauss, and the trapezoidal 
rule accelerated by either the Romberg or Burlisch-Stoer methods. The PadC 
method of acceleration is not very effective for well-behaved integrands. 

TABLE IV 

Comparison of methods of evaluating finite-range 
integrals with finite end-point singularities 

Total 
number 

Method of points 

Exact 

Gauss 
IA 
IB 
IC 

IIA 
IIB 
IIC 
IIIC 

64 
62 
62 
62 

65 
65 
65 
60 

s 28 
In x sin x dx 

II 
- 

-2.4376534 
-2.4376540 
-2.4385830 
-2.4384060 
-2.4374801 
-2.4370968 
-2.4372059 
-2.4378027 
-2.4376191 

c’ x312 dx 
JO 

0.4OOOOOO0 
0.40000000 
0.39999920 
0.39999940 
0.40000000 
0.40000027 
0.40000020 
0.4OOOOOO0 
0.39999999 

s 0 1 
xlln In x dx 

s 0 1 
x314 cos x dx 

-- 

0.4444444 0.44516493 
0.44444797 0.44516495 
0.44497104 0.44518313 
0.44486340 0.44517872 
0.44444345 0.44516491 
0.44340530 0.44514924 
0.44362220 0.44515277 
0.44444417 0.44516492 
0.44447833 0.44516572 

TABLE V 

Comparison of methods of evaluating finite-range 

integrals with infinite end-point singularities 

Total 
number 

Method of points 
s 0 1 

x-112 & 
s II 1 

(xllz + x1/3)--1 dx 
s 0 1 

C. In / 1 - cos x 1 dx 
s 0 1 

x-II2 In x dx 

C = 0.314704298 

Exact 
Gauss 
IA 
IB 
IC 
IIA 
IIB 
IIC 
IIIC 

64 
62 
62 
62 
65 
65 
65 
60 

2.0000000 0.84111692 -0.68529570 -4.OOOOOO0 
1.9865009 0.83970086 -0.68499562 -3.8277977 
1.9157366 0.82602056 -0.67349446 -3.2344007 
1.9242071 0.87788226 -0.67533697 -3.2944255 
1.9999982 0.84127612 -0.68529570 -4.0156027 
1.8539936 0.80825380 -0.62537773 -2.8910217 
1 .I3691887 0.81251178 -0.62799232 -2.9913719 
2.0005200 0.84128694 -0.68529570 -4.Ow8193 
1.9767747 0.83687010 -0.68397215 -3.7468474 
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In Table IV we compare the same methods when the integrand contains finite 
end-point singularities. Here we see that the 64-point Gauss quadrature is best, 
but it must be remembered that we have judged the quality of the 64-point Gauss 
by comparing it with the exact answer. All of the other methods used give a good 
estimate of the error through comparison with earlier approximants. We note that 
the Padt method of accelerating convergence is now more effective than the 
Romberg of Bulirsch-Stoer methods, in accordance with out expectation from 
error analysis. 

In Table V, the same methods are used for integrands with infinite end-point 
singularities. The only successful methods are now those in which the Padt 
acceleration technique is used, and high accuracy is obtained by these methods in 
several examples. This result again accords with the error analysis. 
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In Fig. 1 we plot the logarithm of the relative error as a function of the total 
number of points sampled, for a typical example from each of Tables III-V, 
using method IC. The computations were extended to include more points than 
were used in the tables, to make the error behaviour more obvious. In practice 
such a high number of points need not be used for most integrands; one can use 
an adaptive integration routine which stops sampling in regions where the integrand 
is well-behaved, achieving the same accuracy with fewer points. The unextrapolated 
error is shown for comparison. 

The error curves agree with the error analysis. Extrapolation in last example 
improves most upon the unextrapolated error; in other words, the Pad6 method 
provides greatest acceleration of convergence when the integrand has a bad 
singularity. Individually developed Romberg-like techniques could have been 
applied giving rather better results, but the same integration routine was used 
here in each of the three different cases. No specific knowledge of the type of 
singularity was needed to apply the Pad6 method. 

The last row in each of Tables III-V gives the result of applying the Pad6 
technique to a sequence of approximants in which the number of points used 
increases arithmetically, not geometrically. This method is probably the least 
successful way of evaluating these finite-range integrals. In the next section, 
however, se shall see that this method has remarkable success when applied to a 
difficult class of infinite integrals. 

5. INTEGRALS OVER THE RANGE (0,co) 

We now turn to consideration of integrals of the form 

s= cc s e-“f(x) dx, (5.1) 
0 

and define three ways of forming a sequence of approximants {SD>. Each sequence 
is accelerated by using the Pad& method. The investigation is mainly experimental, 
and is supported by very impoverished error analysis. The methods of defining 
sequences of approximants are: 

IV. The approximation S, is given by p-point Laguerre-Gauss quadrature. 
This is known to be a relatively poor way of evaluating semi-infinite integrals. 
Each value of n requires the evaluation of a separate set of weights and abscissae. 

V. The integral (5.1) is transformed into an integral over the range (0, 1) 
by the transformation u = e+; then 

S = I’f(-log u) du. (5.2) 
0 

The sequence of approximations {SD} is defined by the quadrature rule I. 
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V. The approximation S,, is defined by a fixed low-order Laguerre-Gauss 
quadrature. The second approximation S, is defined by writing (5.1) as 

s 

1 

e-“!(x) dx + e-l 
0 s 

co 

e-“f(x + 1) dx; (5.3) 
0 

the tist integral is evaluated by a tixed low-order Legendre-Gauss quadrature, 
and the second by the fixed order Laguerre-Gauss quadrature. The third approxi- 
mation S, is defined by using the Legendre-Gauss quadrature on two half-ranges 
of the first integral in (5.3), and by treating the second integral in the way the 
original semi-infinite integral was treated. In defining S,,, from S, , we (a) divide 
all finite ranges into two equal parts and apply the Legendre-Gauss quadrature, 
(b) treat the infinite-range part by the method used to define S, . 

TABLE VI 

Comparison of methods of evaluating integrals over 
(0, co) with nonoscillatory integrands 

Total 

number 

s 

co 
2cdx 

s 

m e-= 
s 

m 
Method of points 

0 1+x2 o (1 + x)l,2 dx o e-zx”2 dx s 

m e-* 
dx 

0 (x + 1)x’/2 

Exact 0.34331796 0.75787216 11.631728 1.3432934 

Gauss 10 0.34358732 0.75786305 11.631702 1.0678846 
IVC 10 0.33394760 0.75759028 11.627013 1.1431321 

55 0.34327713 0.75787099 11.631722 1.2055648 
vc 62 0.34337971 0.75787751 11.383258 1.3433249 
VIC 62 0.34339346 0.75786866 11.631935 1.3350015 

The sequences of approximants defined by IV-VI are all accelerated using the 
Pad6 technique C; the Romberg and Bulirsch-Stoer methods are not designed to 
accelerate sequences defined by IV and VI, but the Pad& method is known to be 
useful in many different situations. The investigation based on methods IV and VI 
is purely experimental, and we find that method IV with Pad6 acceleration provides 
an accurate method of evaluating oscillatory integrals over the range (0, co), 
with integrands of the type x-l sin x or J1,2(x). We have no error analysis to explain 
this success. One of us [ 151 has shown that method VI, with Pad6 acceleration, 
gives a small error provided that ffzn)(x) is almost constant in the range (0, co), 
where n is the order of all Gaussian quadrature rules. This is a rather limited 
result, however. 



300 CHISHOLM, GENZ, AND ROWLANDS 

In Table VI and VII we set out the results of applying Pad6 acceleration to 
these sequences of approximants. The methods are summarized in Table II (Key), 
and are labeled IVC, VC and VIC; for comparison, the results of applying IO-point 
Laguerre-Gauss quadrature (IV) are also listed. In Table VI the methods are 
applied to a number of functions which do not oscillate infinitely in the range 
(0, a); it is difficult to draw any conclusions from these examples: the different 
methods have varying success, but we note that the integrand with the x-1/z 
singularity is best treated by transforming to the range (0, 1) and applying the 
method used with success in Table V. 

TABLE VII 

Comparison of methods of evaluating 
oscillatory integrands over (0, m) 

Total 
number co 

Method of points e-” sin x dx 
0 s 

co m 
x-l sin x dx 

s 
J&4 dx 

0 0 s 

m 
J&4 dx 

II 

Exact 0.50000000 1.5707963 l.oooowO l.OOOOOOO 
Gauss 10 0.50000020 1.0126635 -1.1702309 2.2587724 

IVC 10 0.49938704 1.5657113 1.0250348 0.99847050 

55 0.5OOOoOO3 1.5707946 1.0030978 0.99976749 

vc 62 0.50004690 1.5937185 1.0141573 0.95910369 

VIC 62 .50002463 1.5599289 1.0092446 1.0290109 

In Table VII, the methods IVC, VC and VIC are applied to several functions 
which oscillate infinitely in the range (0, co). The first, with integrand e-” sin x, 
is well approximated by the lo-point Laguerre-Gauss quadrature. The Pad6 
method, using all Laguerre-Gauss approximations up to lo-point, gives a rather 
more accurate result. The other three integrands in Table VII are slowly decreasing 
oscillating functions; the Laguerre-Gauss method fails badly, and methods VC 
and VIC are very inaccurate. However, forming Pad6 approximants from the 
Laguerre-Gauss sequence has remarkable success. Even using only up to 4-point 
Gauss approximants gives errors between 0.2 and 2 % only. The Pad6 method 
using up to IO-point Gauss approximants (55 points) gives very good results: 
the accuracy is 3 in lo6 when the integrand is sin x/x. 

We have at present no explanation of the success of this application of the Pad6 
technique; it is, however, a method which is known to be very powerful in many 
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different mathematical problems. We have performed several experiments in order 
to discover the limitations of this method. First, we have evaluated 

by substituting u = xllz and ZJ = x + &x2 before calculating the Laguerre- 
Gauss approximants. The results of using the Pad6 method are then appreciably 
less accurate [15]; we conclude that the method works best when the oscillatory 
part of the integrand has a fixed period as a function of x. This can be arranged 
by making a suitable change of variable. 
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Next, we have studied the rate at which the accuracy of the various methods 
increases as the total number of points increases, for three different integrands. 
The results are given in Figs. 2-4. The success of method IVC is again evident, 
as is the success of method VC in dealing with an end-point singularity. 
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Third, we have studied the evaluation of pairs of integrals which can be trans- 
formed into one another; one of each pair has an oscillatory integrand, and the 
other has not. The results are set out in Table VIII. Once again we see that our 
only successful method of evaluating the oscillatory form of the integral is IVC, 
and that this method works about as well on each form of the two integrals 
studied. All other techniques fail for the oscillatory form of the integrals, even 
though they give fair accuracy for the nonoscillatory form. 
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FIG. 4. Errors for Divided Interval Method over (0, co). 
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TABLE VIII 

Transformed oscillatory integrands 

Total 
number 

m m 
Method of points 

sin x - dx = 
II 1+x 

e-z & 
0 1+x2 

Exact 0.34337796 0.34337796 0.62144962 0.62144962 

Gauss 10 -0.00385509 0.34358732 0.08696261 0.62082117 
IVC 10 0.32885665 0.33394760 0.64615256 0.62984328 

55 0.34331653 0.34327713 0.62155967 0.62157710 
vc 62 0.39292308 0.34337971 0.62319762 0.62144819 
VIC 62 0.31091862 0.34339346 0.62392572 0.62144592 
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Finally, we have investigated various methods of evaluating the integral 

which has a singularity x-lj2 at x = 0, and has a slowly decreasing oscillatory 
integrand as x + co. From the left-hand columns of Table IX we see that all 
the methods used fail to give a reasonable result. We have performed a diagnostic 
test by dividing the range of integration at x = 1, applying method IC to the 
range (0, 1) in which the x-l/” singularity occurs, and method IVC to the range 
(1, co) in which the infinite oscillation occurs. This procedure gives accurate 
results, shown on the right of Table IX; this table also shows that the most efficient 
procedure in this example is to take roughly equal numbers of points in (0, 1) 
and in (1, co). 

TABLE IX 

Evaluation of J-l/z(x) 
Methods used in Tables VII and VIII Division into finite and infinite intervals 

Total Points on Points on 
number finite infinite cc Total m 

Method of points 
.c 

J-Ax) dx interval interval points 
s J-I&) dx 

0 II 

Exact 1.0000000 30 21 51 0.99488395 
Gauss 10 -0.56604056 30 28 58 0.99984723 
IVC 10 -0.47625778 14 45 59 1.00239072 

55 0.78836657 30 55 85 1.00028776 
vc 62 0.88113493 62 55 117 0.99992326 
WC 62 0.68054941 254 55 309 0.99991936 

6. FINITE RANGE MULTIPLE INTEGRALS 

The error analysis for multiple integrals becomes more complicated, but for 
most functions, asymptotic error expansions which are amenable to extrapolation 
in ways similar to the ways used for single integrals should exist. For well-behaved 
integrands, Anders [16] has derived such an expansion for use with the multi- 
dimensional trapezoidal rule. For integrands with integrable boundary singulari- 
ties, analytical techniques derived from those used by Fox [14] seem to work, 
and one of us (A.G.) is presently working on the details of this problem. A limited 
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amount of experimentation also supports this conclusion, and in Table X we 
exhibit some of the experimental results. The basic rule used was a second degree 
rule suggested by Stroud [17], which requires IZ + 1 points for an n-dimensional 
integral. Low order Gauss-Legendre product rules also work but require more 
points; the multidimensional midpoint and trapezoidal rules, however, do not 
seem to have sufficient accuracy for our purposes. The region in question is 
successively subdivided into 2pn (p = 1,2,...) subregions by successive halving 
in each dimension, and the basic rule applied to each subregion, with S, equal 
to the sum of the results for the 2pn subregions. The epsilon algorithm is then 
applied to S, . In order to prevent the large growth in the number of points 
sampled, sampling was stopped after a certain stage in those regions where the 
integrand was well-behaved. This modification was such that the asymptotic 
behavior of the error term was not changed, so that E-algorithm extrapolation 

TABLE X 

Finite-Range Multidimensional Integrals 

Integral 
Exact 
value 

Adaptive extrapolation Gauss 20-point 
technique product rule 

Total Equivalent Total 
Value points point No.” Value points 

SIS 0 1 0 1 0 1 
(x 

+ 1 + 
Y 4” 

dxdydz 0.863046 0.863445 2,340 2,340 0.860887 8,000 

0.863032 10,532 18,724 

SSfS 1 1 1 1 1 
II 0 II Cl (x+Y+z+w)3~5 

dxdydzdw 0.472450 0.472293 99,925 349,525 0.443750 160,000 

cos (x + y) sin (z) 
(XYZ)‘“” dxdydz 2.37201 2.37161 13,348 18,724 2.19296 8,000 

w,o, 1, 1,3Y 0.528084 0.528092 20,565 21,845 0.527674 160,000 

e3,1,1,3,4)* 0.303745 0.303391 14,165 21,845 0.265489 160,000 

a Number of function evaluations that would have been used, had the subroutine not been 
adaptive. 

b Z(k, m, n, r, s) = s: Jl JI 1: z’w8xntz~~-‘“‘A” dxdydzdw 

b = 1 - xy(1 - wz + wzz2), A = 1 - x(1 - wz + w2z), 

F = w*xp + yA2. 
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could still be validly used on the resulting S, . Further details of this technique 
will be published by one of us (A.G.) when testing of the subroutine is complete. 
The results of Table X definitely show that the extrapolation is working for the 
integrals that were used. The 20-point Gauss-Legendre product rule (requiring a 
total of 20% points) result is given for comparison. The integrals I(1, 0, 1, 1, 3) 
and I(3, 1, 1, 3,4) are taken from a recent paper by Peterman [18] and were used 
for the calculation of the analytic 4th order crossed ladder contribution to the 
Lamb Shift. 

7. CONCLUSIONS 

We have studied three methods of accelerating convergence of various sequences 
of quadrature approximants to finite-range integrals. We have also studied the 
Pad6 or E-algorithm method of accelerating convergence of various sequences of 
approximations to integrals over the range (0, co). The main results of the paper 
are three successful applications of the Pad6 method to types of integral that are 
otherwise difficult to evaluate. 

The first main result involves forming a sequence of approximants to finite- 
range integrals with an infinite end-point singularity, such as x-l12 or log x at 
x = 0, by using a fixed Gaussian quadrature on each of 2~ equal subintervals. 
The Pad6 acceleration method allows us to evaluate this type of integral accurately. 
The error analysis of Section 3 explains why this technique works. 

The second main result also uses the Pad6 acceleration method, applied to 
sequences of n-point Laguerre-Gauss quadrature approximants to integrals over 
(0, co); the method is especially effective for slowly decreasing oscillatory integrands 
such as sin x/x or J,,,(x), when standard methods fail. We have not been able to 
provide error analysis to explain this result. 

The third main result involves generalizing the techniques used for finite-range 
single integrals for use in evaluating finite-range multidimensional integrals. The 
mainly experimental finite-range multidimensional integrals. The mainly experi- 
mental results indicate that this technique combined with the use of an adaptive 
subroutine should be useful in the calculation of integrals with boundary singu- 
larities such as the Feynman variable integrals in quantum field theory. 

These techniques can be added to the range of existing techniques for evaluating 
various types of single and multivariable integrals, and should help to alleviate 
some of the sometimes tedious extra analysis needed to be done to calculate some 
integrals. Further investigations are being made in Canterbury in an attempt to 
extend these methods to deal with singularities within the range of integration and 
with the evaluation of principal value and other important integrals when there 
is a pole of the integrand in the range of integration. 



ACCELERATED CONVERGENCE OF SEQUENCES 307 

ACKNOWLEDGMENTS 

We acknowledge with gratitude the support of the United States Air Force, without which 
this work would not have been carried out. We are very grateful to the University of Kent Com- 
puting Laboratory for making their services available to us; we are especially indebted to members 
of staff of the Computing Laboratory, and to Dr. P. Graves-Morris for their assistance in writing 
programs. 

REFERENCES 

1. W. ROMBERG, Det. Kong. Norske Videnskabers Selskab Forhandlinger 28 (1955), 7. 
2. P. J. DAVIS AND P. RAB~NOW~TZ, “Numerical Integration,” pp. 166-170, Blaisdell, Waltham, 

MA, 1967. 
3. R. BULIRSCH, Numer. Math. 6 (1964), 6. 
4. R. BULIRSCH AND J. STOER, Numer. Math. 6 (1964), 413. 
5. G. A. BAKER, JR. AND J. L. GAMMEL (Eds.), “The Pade Approximant in Theoretical Physics,” 

Academic Press, New York, Chap. I, p. 16, 1970. 
6. J. L. BASDEVANT, “Pad6 Approximants,” Herzeg Novi Lectures, 1968. 
7. H. S. WALL, “Continued Fractions,” Chelsea, New York, 1967. 
8. G. A. BAKER, JR., Ref. [5, pp. 3-61. 
9. P. WYNN, Math. Comp. 10 (1956), 91. 

10. P. WYNN, Math. Comp. 15 (1961), 151. 
11. J. D. P. DONNELLY, “Methods of Numerical Approximation,” (D. C. Hanscomb, Ed.), 

pp. 131-138, Pergamon, New York, 1966. 
12. R. DE MONT~SUS DE BALLORE, Bull. 5’ci. Math. France 30 (1902), 28. 
13. J. N. LYNESS AND B. W. N~NHAM, Math. Comp. 21 (1967), 162. 
14. L. Fox, Comput. J. 10 (1967), 87. 
15. GLENYS E. RO~LANDS, M. SC. Thesis, Chap. 4, University of Kent, 1971. 
16. E. B. ANDERS, J. Assoc. Comput. Much. 13 (1966), 505-510. 
17. A. H. STROUD, Math. Comp. 11 (1957), 260. 
18. A. PETERMAN, Phys. Lett. B 35 (1971), 325. 


